Хаббл» запечатлел «звёздный вулкан», извергающий яркий газ
Космический телескоп «Хаббл» сделал эффектный красочный снимок крупным планом двух близлежащих звёзд в созвездии Водолея, которые находились в тесном контакте на протяжении столетий. Космическая обсерватория продемонстрировала сложное взаимодействие звёздного дуэта. читать дальше
в форме песочных часов, образовавшаяся в результате многовекового взаимодействия двух звёзд: компактного, оставшегося практически в неизменном виде белого карлика (горячая сгоревшая звезда) и его звезды-компаньона, холодного красного гиганта, который увеличился до размеров, превышающих размеры нашего Солнца более чем в 400 раз, и меняющего свою температуру и яркость 750 раз за период примерно в 390 земных дней.
Эта звёздная система, известная как R Aquarii (R Водолея), находится на расстоянии около 710 световых лет от Земли в созвездии Водолея. Она относится к симбиотическому классу переменных звёзд, что по аналогии с биологическим термином «симбиоз» означает сосуществование двух различных объектов — совершенно разных типов звёзд — в тесной близости друг к другу.
Белый карлик, вращаясь вокруг красного гиганта с орбитальным периодом в 44 года, в момент приближения сбрасывает вещество на его поверхность, время от времени взрываясь, как «гигантская водородная бомба». В результате этого взрыва в космос выбрасываются искривлённые потоки светящегося газа, которые, по описанию учёных, выглядят как «сошедший с ума садовый разбрызгиватель для поливки газона». Выброшенный материал устремляется в космос со скоростью более 1,6 миллиона километров в час. Для примера учёные приводят расстояния от Земли до Луны, которое преодолевается за 15 минут!
Процесс наглядно демонстрирует, как Вселенная перераспределяет продукты термоядерного синтеза, которые образуются глубоко внутри звёзд и выбрасываются обратно в космос. Причём некоторые из этих продуктов включают более тяжёлые элементы, такие как углерод, азот и кислород, являющиеся важнейшими строительными блоками планет, подобных нашей.
Будучи одной из ближайших симбиотических звёзд, R Водолея была тщательно изучена с помощью множества космических и наземных телескопов. Например, телескоп «Хаббл» начал наблюдать за ней вскоре после запуска на орбиту в 1990 году. Десять лет спустя рентгеновская обсерватория «Чандра» начала отслеживать изменения рентгеновского излучения туманности, главным образом излучаемого её узловатой струёй и ударными волнами, которые R Водолея генерирует при столкновении с окружающим веществом. На основании этих наблюдений астрономы предполагают, что последний раз извержения белого карлика произошли в конце 1970-х годов, и предположительно, следующий взрыв может произойти не ранее 2470 года.
Последний снимок звёздной системы, сделанный «Хабблом», показывает, что в результате воздействия мощных магнитных полей и силы самого взрыва выброшенный материал образовал спиральный узор и распространился на расстояние более 400 миллиардов километров, что в 24 раза превышает диаметр нашей Солнечной системы, и по мнению команды «Хаббла» «поистине невероятен даже по астрономическим меркам». Покадровые снимки R Водолея, сделанные за последние 10 лет, демонстрируют изменения яркости звёздной пары, вызванные сильными пульсациями красного гиганта, а также драматическую эволюцию окружающей туманности.
Учёные начали искать признаки космической связи у инопланетян, но пока безрезультатно
Земная космонавтика служит источником мощных направленных радиосигналов, которые вполне способны достичь иных миров и стать доказательством существования разумной жизни на нашей планете, если кого-то там это интересует. Таким же образом можно попытаться найти признаки разумной жизни в иных мирах, если поискать следы инопланетных космических программ. Лучшим кандидатом для поиска стала близлежащая система TRAPPIST-1, которую внимательно прослушали. читать дальше
В системе TRAPPIST-1 обнаружены признаки не менее семи экзопланет, часть которых находится в зоне обитания местной звезды. Она удалена от Земли на 40 световых лет и удобна для наблюдения. Если в этой системе существует развитая цивилизация и она уже доросла до космических полётов, то это должно сопровождаться интенсивным радиообменом между материнской планетой и станциями по изучению других миров в системе.
И хотя 40 световых лет — это приличное расстояние, чтобы искусственный радиосигнал затух или потерялся в шумах, направленное и усиленное для космоса сообщение вполне может долететь до Земли. В этой ситуации главное — это оказаться на прямой линии между материнской планетой в системе TRAPPIST-1, местной для этой системы изучаемой планетой и Землёй. Такие события достаточно часты, чтобы за ними можно было проследить. Учёные из проекта SETI в сотрудничестве с коллегами из Университета Пенсильвании вычислили такие окна и провели 28-часовое прослушивание объекта.
Сканирование пространства в направлении системы TRAPPIST-1 дало миллионы радиосигналов. Фильтры оставили наиболее перспективные из них, которых оказалось 11 127. Из этого числа 2264 сигнала пришлись на время «противостояния» Земли и двух планет в инопланетной системе. Детальный разбор оставшихся радиосигналов не нашёл в них признаков искусственного происхождения.
«Методы и алгоритмы, которые мы разработали для этого проекта, в конечном итоге могут быть применены к другим звёздным системам и увеличить наши шансы найти регулярную связь между планетами за пределами нашей Солнечной системы, если они существуют», — сказал Ник Тусей (Nick Tusay), первый автор исследования. Одна неудача не означает провала. Наконец, никто не обещал, что в системе TRAPPIST-1 непременно есть разумная жизнь на уровне космической цивилизации.
Телескоп «Джеймс Уэбб» обнаружил в ранней Вселенной невозможные квазары
Квазары — это активные ядра галактик, представляющие собой сверхмассивные чёрные дыры, которые непрерывно поглощают падающее на них вещество. Как же удивились учёные, когда в ранней Вселенной космический телескоп «Джеймс Уэбб» обнаружил квазары без регистрируемого окружения из вещества. Такое просто невозможно, чтобы сияние квазаров через миллиарды лет наблюдалось и возникло в полной пустоте. читать дальше
«Вопреки предыдущему мнению, мы обнаруживаем, что в среднем эти квазары не обязательно находятся в областях ранней Вселенной с наибольшей плотностью. Некоторые из них, кажется, находятся неизвестно где, — поделилась в заявлении доцент физики Массачусетского технологического института Анна-Кристина Эйлерс (Anna-Christina Eilers). — Трудно объяснить, как эти квазары могли вырасти такими большими, если кажется, что им нечем питаться».
Современная космология предполагает, что космическая паутина из нитей тёмной материи и её сгустков в узлах способствовала концентрации обычного вещества и его превращению в звёзды, галактики и всё остальное. Сделанные с помощью обсерватории им. Джеймса Уэбба открытия вносят неопределённость в эти гипотезы и теории. «Уэбб» смог заглянуть на глубину до 13 и более миллиардов лет назад, когда материя во Вселенной образовала первые галактики, а эти галактики, а также сверхмассивные чёрные дыры в их центрах, оказались неожиданно большими. Согласно стандартной модели, они просто не успели бы эволюционировать до регистрируемых размеров.
Мало было этих проблем, как вскрылись новые. Учёные изучили пять самых ранних из открытых квазаров на этапе 600–700 млн лет после Большого взрыва. Исследователей волновал вопрос — чем они питаются, если стали такими большими уже на ранних этапах своей эволюции? Оказалось, что некоторые квазары вообще не имеют регистрируемого вещества в пределах своего «ареала обитания». Их яркость и аккрецию вещества вообще ничем нельзя объяснить. На целом ряде длин волн учёные не обнаружили признаков материи.
Логично было бы ожидать, что квазары в ранней Вселенной обнаруживаются в областях узлов тёмной материи, где много, например, видимых галактик. Но рядом с некоторыми из наблюдаемых квазаров было всего 2 галактики, а рядом с другими — 50 и более. Это говорит о том, что супермассивные чёрные дыры (квазары) выросли на неизвестном науке механизме эволюции, который ещё предстоит открыть. Не исключено, что новые наблюдения помогут зарегистрировать рядом с квазарами холодные скопления газа и пыли, но это всё равно плохо укладывается в современные космологические представления.
В центре нашей галактики обнаружен загадочный источник мощнейших в истории наблюдений гамма-лучей читать дальше
За более чем 7 лет работы наземной обсерватории HAWC для слежения за космическими лучами учёные обнаружили 98 мощнейших гамма-лучей за всю историю наблюдения за нашей галактикой. Частицы предположительно пришли от одного источника, происхождение которого остаётся неизвестным. В месте ожидаемого рождения частиц с рекордно высокой энергией нет видимых источников, способных придать частицам зарегистрированное ускорение.
В 2015 году в Мексике вступил в строй весь массив детекторов обсерватории HAWC (High Altitude Water Cherenkov experiment или, по-русски, Высокогорный эксперимент по поиску эффекта Черенкова). Это массив из трёх сотен чанов с почти двумя сотнями тонн воды с высочайшей степенью очистки. Почти сто лет назад — в 1934 году — советские физики Павел Черенков и Сергей Вавилов открыли эффект слабого свечения в жидкости при взаимодействии с гамма-излучением. Гамма-лучи выбивали электроны и разгоняли их до скоростей, превышающих скорость света в воде, что вызывало свечение.
Детекторы HAWC используют этот принцип для регистрации космических лучей на Земле. Сами гамма-частицы не долетают до поверхности планеты. Детекторы регистрируют продукты их распада (взаимодействия) с частицами атмосферы. По следам разлёта можно вычислить энергию исходных гамма-частиц и примерную область неба, откуда они прилетели.
Часто высокоэнергетические частицы связывают с понятием природного ускорителя — певатрона. Это сочетание понятий петаэлектронвольт и ускорение. Это тот уровень энергий, выше которого регистрируемые частицы могут иметь внегалактическое происхождение (они способны преодолевать галактические магнитные поля и покидать галактику). В то же время в нашей галактике есть источники частиц с энергией, близкой к ПэВ, а значит, и наши родные певатроны. Например, таковым считается Крабовидная туманность — останки взорвавшейся тысячу лет назад сверхновой.
В общем случае певатроном — сверхускорителем частиц — могут быть нейтронные звёзды, чёрные дыры, вспышки сверхновых и другие объекты и явления с мощными магнитными полями. Сложность их обнаружения заключается в том, что магнитные поля искривляют траектории частиц. Но это также служит источником данных о мощных физических явлениях во Вселенной, чего невозможно достичь в лабораторных условиях на Земле.
Неизвестный источник мощнейших гамма-лучей в центре нашей галактики получил название HAWC J1746-2856. Все 98 случаев регистрации его излучений превысили энергию 100 ТэВ. «Эти результаты позволяют заглянуть в центр Млечного Пути с энергией на порядок выше, чем когда-либо наблюдалось ранее», — поясняют физики.
Жизнь на Землю прилетела из космоса, снова убедились учёные — молекулы органики найдены в ближайшей области звездообразования читать дальше
Учёные получили новые доказательства, что базовые органические молекулы, необходимые для зарождения биологической жизни на Земле, пришли из космоса. В окаменелостях на планете признаки клеточной органики находят в слоях возрастом 3,7 млрд лет — почти сразу после её остывания до безопасного уровня. В таком случае клеточная жизнь не успела бы развиться из обычных химических элементов. Нужны были простые органические молекулы, очевидно — из космоса.
Учёные давно фиксируют присутствие сложных органических молекул в межзвёздном пространстве (соединения углерода и водорода). В общем случае — это класс так называемых полициклических ароматических углеводородов (ПАУ), кольцеобразных соединений из десятков атомов. Интересно, что ранее теория не предполагала существования в межзвёздном пространстве молекул, более сложных, чем соединения из двух атомов. Наука считала, что ионизирующее излучение, особенно сильное в областях звездообразования, стабильно разрушает сложные молекулы. С появлением радиоастрономии молекулы ПАУ стали фиксироваться повсеместно, хотя одна проблема оставалась.
В инфракрасном и радиодиапазоне земная наука научилась различать крупные молекулы ПАУ. Между тем для процессов зарождения биологической жизни требовались более простые молекулы. В частности, было бы желательно обнаружить, например, пирен — одну из самых маленьких молекул ПАУ, состоящую всего из 26 атомов. Пирену было бы трудно выжить в плотном ионизирующем излучении молодых звёзд в зонах звездообразования, однако его также невозможно обнаружить в диапазоне радиоволн. Тогда учёные пошли другим путём.
Известно, что в соединении с цианидом пирен образует цианопирен (1-cyanopyrene, C17H9N). Цианопирен отлично регистрируется радиотелескопами, а зная распределение и соотношение цианида можно рассчитать ожидаемое количество пирена в изучаемой области пространства.
Учёные изучили ближайшую к Земле область звездообразования — удалённое на 450 световых лет молекулярное облако Тельца. Объём пирена, рассчитанный для этого облака холодного межзвёздного газа и пыли, превзошёл все мыслимые ожидания. Хотя в этой области множество новорождённых звёзд и процесс их формирования не прекращается, пирена — одного из базовых «кирпичиков» для зарождения биологической жизни — здесь в избытке. Это означает, что он в значительном количестве осядет на будущие планеты и, вероятно, в избытке присутствовал в облаке пыли и газа, которое впоследствии стало Солнечной системой.
Кстати, пирен обнаружен в образцах с астероида Рюгу, что стало ещё одним доказательством его существования в холодных межзвёздных облаках материи. Новое открытие ещё немного укрепило гипотезу внеземного происхождения жизни хотя бы на уровне базовых органических молекул.
Астрономы открыли первую в истории наблюдений тройную звёздную систему с чёрной дырой читать дальше
Нашумевшая «Задача трёх тел» китайского писателя-фантаста Лю Цысиня наглядно показала, насколько неустойчивым и поэтому редким явлением во Вселенной может быть звёздная система из трёх объектов звёздной массы (звёзд или чёрной дыры). Тем удивительнее стало открытие такой системы, в центре которой впервые была обнаружена чёрная дыра.
Источником информации для открытия стали собранные европейским астрометрическим спутником «Гайя» (Gaia) данные. Этот аппарат создаёт динамический трёхмерный каталог звёзд в Млечном Пути и немного за его пределами. «Гайя» определяет вектор и скорость движения звёзд, что позволяет определить гравитационно-связанные объекты и выявить двойные и даже тройные системы.
Согласно данным измерений «Гайи», изначально считавшаяся двойной системой V404 Лебедя (Cygni) включает в себя третью звезду. Система удалена от Земли на 7800 световых лет. Недалеко от компактного центра в виде чёрной дыры звёздной массы и разрываемой ею близкой звезды с орбитальным периодом в 6,5 суток находится третья звезда, по-видимому, гравитационно связанная с системой. Нюанс в том, что эта звезда находится на удалении 3500 а.е. от чёрной дыры и делает полный оборот вокруг неё за 70 тыс. лет. Эта звезда была видна и раньше, но только измерения «Гайи» смогли показать её связь с двумя центральными объектами.
Собственно, в такой конфигурации пресловутая задача трёх тел решается положительным образом — такая система будет гравитационно устойчивой условно бесконечно долгое время. Суть открытия в другом — гравитационная привязка третьей далёкой звезды к центральной паре настолько слабая, что в данной ситуации кажется невозможной.
Дело в том, что центральная чёрная дыра должна была образоваться в результате взрыва сверхновой, сбросить внешнюю оболочку и коллапсировать ядром. Все эти бурные проявления должны были бы разорвать слабую гравитационную связь с третьей звездой. Этого не произошло бы только в том случае, если бы коллапс произошёл без взрыва сверхновой. Такое явление теоретически возможно, но его сложно обнаружить и подтвердить наблюдениями (сверхновую будет видно в любом случае).
Моделирование ситуации с системой Лебедя V404 показало, что коллапс центральной звезды внутрь — это наиболее вероятный сценарий для описания того, что астрономы увидели в данных «Гайи» и последующих наблюдениях за системой. Сразу же возник вопрос — это так повезло, или тройные системы с чёрными дырами — это непременный или часто случающийся этап эволюции чёрных дыр? Ответ на него могут дать только последующие наблюдения.
Китайская космическая станция «Тяньгун» станет намного функциональнее и больше после модернизации читать дальше
Китай планирует значительно расширить возможности своей орбитальной станции «Тяньгун». В проекте — добавление новых модулей, запуск многоразового космического корабля «Мэнчжоу» и ввод в эксплуатацию телескопа «Сюньтянь», что будет способствовать международному сотрудничеству в области космических исследований. Эти шаги позволят Китаю укрепить своё присутствие в космосе и предложить новую базу для научных экспериментов, особенно после планируемого вывода из эксплуатации Международной космической станции (МКС) около 2030 года.
Китайская станция была введена в эксплуатацию в ноябре 2022 года после установки научного модуля «Мэнтянь», который завершил трёхмодульную Т-образную конструкцию «Тяньгун». На сегодняшний день станция, масса которой составляет около 20 % от массы МКС, используется для проведения экспериментов в различных научных областях. Тем не менее, Китай намерен расширить её возможности, чтобы поддерживать более сложные и длительные миссии на низкой околоземной орбите. Планируется поддерживать станцию в рабочем состоянии как минимум 10 лет, а после вывода МКС из эксплуатации «Тяньгун» может стать единственной космической станцией на земной орбите, что сделает Китай ключевым игроком в области космических исследований и освоения космоса.
На Международном астронавтическом конгрессе (International Astronautical Congress, IAC), прошедшем 17 октября в Милане, Ли Мин (Li Ming), председатель научно-технического комитета Китайской академии космических технологий (China Academy of Space Technology, CAST), сообщил, что первым этапом модернизации станет усовершенствование центрального модуля станции — «Тяньхэ». Это даст возможность присоединить к «Тяньгун» новые модули, трансформируя нынешнюю Т-образную форму станции в более функциональную крестообразную или двойную Т-образную. Такое изменение обеспечит дополнительное пространство для научных стоек, большего количества внекорабельных экспериментов и, в конечном итоге, увеличит масштабы исследований на борту станции.
Помимо расширения станции, Китай разрабатывает многоразовый космический корабль «Мэнчжоу», который станет важной составляющей лунных миссий и полётов к «Тяньгун». Корабль будет выпускаться в двух версиях: одна — для лунных миссий с экипажем из трёх человек, другая — для миссий на низкой околоземной орбите с экипажем до семи человек. В 2020 году была проведена первая тестовая миссия этой модели без систем жизнеобеспечения, а его полноценный дебютный запуск ожидается около 2027 года на версии ракеты «Чанчжэн-10» для низкой околоземной орбиты. Корабль будет частично многоразовым, что расширит возможности по доставке и возвращению экипажей.
Выводить «Мэнчжоу» и другие модули на орбиту будет новая ракета «Чанчжэн-10» (Long March 10), которая, как и космический корабль, разрабатывается в двух версиях: для низкой околоземной орбиты и для полётов к Луне. Обе версии ракеты являются неотъемлемой частью китайской программы по высадке астронавтов на Луну, реализация которой запланирована к 2030 году. Ракета находится в стадии разработки и станет ключевым элементом для достижения этих амбициозных целей.
В настоящее время Китай отправляет свои экипажи на орбиту с помощью корабля «Шэньчжоу», который напоминает российский «Союз», но имеет большие размеры. «Шэньчжоу» используется для отправки астронавтов на низкую околоземную орбиту. Очередная миссия «Шэньчжоу» к станции «Тяньгун» запланирована на 30 октября.
Завершением текущего этапа модернизации «Тяньгун» станет запуск орбитального телескопа «Сюньтянь» (Chinese Space Station Telescope, CSST). По своим возможностям он будет сравним с телескопом «Хаббл», однако его поле зрения, в 300 раз превышающее поле «Хаббла», позволит проводить широкомасштабные астрономические исследования. Телескоп оснастят зеркалом диаметром 2 метра (немного меньше, чем у «Хаббла» с зеркалом 2,4 метра) и камерой с разрешением 2,5 млрд пикселей. «Сюньтянь» сможет сканировать и картографировать около 40 % звёздного неба в течение 10 лет. Он будет находиться на одной орбите с «Тяньгун» и сможет стыковаться с ней для технического обслуживания, ремонта и модернизации, что продлит срок его службы и обеспечит непрерывное обновление научного оборудования.
Китай предпринимает шаги для расширения международного сотрудничества в космосе: данные, которые будет собирать «Сюньтянь», планируется предоставить мировому научному сообществу, способствуя совместным исследованиям. Ли Мин заявил: «Мы готовы приветствовать астронавтов из других стран на станции „Тяньгун“, основываясь на принципах взаимного уважения, взаимной выгоды, инклюзивности и равенства». Этот шаг не только укрепит позиции Китая в глобальной науке, но и создаст условия для более тесного научного взаимодействия.
NASA показало девять мест на Луне, куда могут высадиться астронавты в 2026 году читать дальше
NASA опубликовало обновлённый список возможных мест посадки своей миссии Artemis III вблизи Южного полюса Луны — в рамках этой миссии человек впервые за последние полвека должен снова ступить на поверхность спутника.
Американское космическое агентство не одно десятилетие вынашивало планы по возвращению человека на Луну. В 2019 году соответствующая программа получила название Artemis, а в 2022 году стало ясно, что посадка будет осуществляться в районе Южного полюса. Аппарат Lunar Reconnaissance Orbiter (LRO) помог NASA проанализировать данные и выбрать 13 возможных мест посадки; теперь же агентство уточнило этот список — старт миссии с высадкой пока запланирован на 2026 год.
Из присутствовавших ранее в этом списке позиций остались: края кратера Нобиле (Nobile Rim 1 и Nobile Rim 2), край кратера Де Герлах (de Gerlache Rim 2), кратеры Малаперт (Malapert Massif) и Хауорт (Haworth). Из новых значатся: пик возле кратера Кабео (Peak near Cabeus B), плато и гора Монс Мутон (Mons Mouton Plateau и Mons Mouton) и равнина кратера Слейтер (Slater Plain).
Новые точки посадки были выбраны «многопрофильной группой учёных и инженеров», которые в качестве исходной информации использовали данные LRO и других источников. Места посадки оценивались с точки зрения научного потенциала, доступного окна запуска, пригодности местности, возможности связаться с Землёй, условий освещения и безопасности.
В прошлом году близ Южного полюса Луны совершил посадку индийский аппарат «Чандраян-3» (Chandrayaan-3), а в этом — китайский «Чанъэ-6» (Chang’e 6). Этот регион представляет интерес, поскольку предполагается, что там есть ресурсы, способные поддерживать присутствие человека, в частности, водяной лёд. Экипаж Artemis III составит до четырёх человек. Ракета-носитель Space Launch System отправит их на космическом корабле Orion, а посадку на Луну они произведут на аппарате SpaceX Starship Human Landing System. Миссия на поверхности Луны продлится около недели.
Защитный экран лунного корабля Orion ненадёжен, но в NASA предпочитают об этом помалкивать читать дальше
Примерно через полгода после успешного полёта корабля Orion вокруг Луны в беспилотном режиме NASA сообщило, что теплозащитный экран корабля повёл себя не так, как ожидали инженеры. Вместо равномерного истончения экран местами выгорел до основания и от него отваливались куски. Это не привело к катастрофе, но потенциально угрожает будущей пилотируемой миссии. В NASA докопались до корней аномалии, но предпочитают держать их в секрете.
На днях на тематической конференции представителям NASA были заданы прямые вопросы, что они могут сказать о проблемах с теплозащитой корабля. «Я не собираюсь делиться этим прямо сейчас. Когда это будет обнародовано, всё узнаете сразу, — заявила Лори Глэйз (Lori Glaze), исполняющая обязанности заместителя помощника администратора Управления миссии по разработке исследовательских систем NASA, которое курирует программу Artemis. — У нас есть окончательное определение первопричины проблемы».
Корабль Orion отправился в облёт Луны на ракете SLS. Миссия Artemis 1 должна была стать для него главным испытанием на надёжность. Скорость входа капсул «Орион» в атмосферу планеты при возвращении почти вдвое выше скорости возвращения капсул с земной орбиты и достигает 40 тыс. км/ч. У NASA есть лаборатория ArcJet-Complex для исследования тепловых нагрузок на теплозащитные экраны космических кораблей, но она не может воспроизвести там условия для кораблей, возвращающихся из межпланетных полётов. Первый Orion должен был на своей шкуре испытать, каково это.
Компьютерное моделирование предполагало, что материал теплового экрана — Avcoat, произведённый компанией Textron Systems по лицензии Lockheed Martin — должен был постепенно выгорать, в целом оставаясь сплошным покрытием. Экран представляет собой щит из 186 формованных блоков, наклеенных на специальное термоустойчивое основание (тоже один из элементов теплового экрана). Изначально экран должен был быть сплошным, но испытания корабля на околоземной орбите показали, что это стало бы не лучшим выбором и его сделали блочным.
После спуска облетевшего Луну «Ориона» в Тихий океан выяснилось, что местами блоки прогорели или откололись целыми кусками до базовой основы. Если бы в корабле были астронавты, для них это не имело бы никаких последствий. Тем не менее, экран повёл себя не так, как ожидали инженеры, а это заставляет искать причины такого поведения. Если в этот раз повезло, не факт, что повезёт в следующем полёте.
В NASA утверждают, что специалисты выяснили первопричину аномального поведения теплозащиты. Официальное сообщение на этот счёт задержится, поскольку нужны дополнительные проверки, которые проведут в декабре. По мнению источника, руководство агентства просто не желает озвучивать негатив в преддверии выборов нового президента США и, вероятно, до смены главы NASA, которая за этим последует. Такие новости обычно сообщают в последние недели пребывания предыдущего главы Белого дома на его должности. Поэтому следует ждать января 2025 года, чтобы ситуация прояснилась.
Затягивание решения вопроса с тепловой защитой «Ориона» чревато отсрочкой отправки астронавтов в полёт вокруг Луны и возвращения человека на Луну. Проблема ещё в том, что корабль для полёта с экипажем в ходе миссии Artemis 2 уже установлен на сервисный модуль и его начали обклеивать плитками теплового экрана. Если этот процесс остановить для переделок, то это как минимум на год отложит полёт, запланированный на сентябрь 2025 года. Отсутствие решения по тепловой защите корабля также не позволяет приступить к сборке первой ступени ракеты SLS. Это невозможно по причине ограниченного срока службы твердотопливных ускорителей, которые в случае замены теплового щита окажутся непригодны после задержек на год или дольше, если их установить в ближайшее время.
С учётом неопределённости с тепловым экраном корабля Orion и других проблем с ракетой SLS, производственным процессом Boeing и мобильной пусковой установкой повышенной грузоподъёмности, возвращение человека на Луну в 2026 году представляется фантастическим сценарием. Так есть ли смысл дальше вкладываться в это малоперспективное дело? В США уже публично задаются этим вопросом.
«Джеймс Уэбб» показал впечатляющую паутину галактики Фантом
NASA опубликовало полученный космическим телескопом «Джеймс Уэбб» (JWST) снимок галактики, известной под номерами M74 и NGC 628, а также под неофициальным названием «Фантом». Впервые аппарат запечатлел её в 2022 году. читать дальше
Старое изображение было получено при помощи прибора MIRI (Mid-InfraRed Instrument) среднего инфракрасного диапазона на телескопе «Джеймс Уэбб»; в новом данные MIRI были объединены с данными прибора Near-InfraRed Camera (NIRCam), работающего в ближнем инфракрасном диапазоне. Это помогло учёным проекта Feedback in Emerging extrAgalactic Star clusTers (FEAST) изучить расположенные в этой области звёздные ясли.
Звёздные ясли — области в космосе, заполненные газами и молекулярными облаками. Здесь рождаются звёзды и планеты, поэтому чаще их называют областями звездообразования. Основная задача проекта FEAST — изучать образование и взаимодействие звёзд за пределами нашей галактики. Подсчитывая объёмы энергии, которую звезды выбрасывают в окружающую среду, учёные могут лучше понять механизмы их появления.
Объединив данные MIRI и NIRCam, учёные получили основания сделать вывод, что спиральные рукава галактики M74 — наиболее активные области звездообразования в ней. Снимок NIRCam помог увидеть линии излучения водорода, которые не так сильно подвержены влиянию пыли, и которые показывают, где формируются новые массивные звёзды.
«Вояджер-1» отправил на Землю сигнал через передатчик, который не включался с 1981 года читать дальше
Из-за проблем в работе основного радиопередатчика космический аппарат «Вояджер-1» послал сигнал на Землю через вспомогательный модуль, не запускавшийся с 1981 года. Об этом сообщает портал Space.com со ссылкой на заявление американского аэрокосмического агентства NASA.
В середине октября межзвёздный исследовательский аппарат столкнулся с проблемами в работе основного коммуникационного оборудования, после чего был автоматически переведён в безопасный режим работы для экономии энергии. Проблема обнаружилась после того, как на отправленный 16 октября с помощью сети Deep Space Network (DSN) (дальняя сеть космической связи NASA) сигнал на аппарат, чтобы тот включил один из своих обогревателей, и команда миссии 18 октября не получила ответ на эту команду.
После отправки 16 октября новых инструкций на «Вояджер-1» команда миссии ожидала получить обратный сигнал с данными от аппарата в течение последующих пары дней. Обычно передача сигнала на зонд, находящегося более чем в 24 млрд км от Земли, занимает около 23 часов. Ещё столько же требуется для передачи сигнала аппаратом на Землю. Однако 18 октября команда миссии не обнаружила сигнала от «Вояджера-1» на X-диапазоне частот с помощью антенн глобальной системы космической связи DSN. Произошло это из-за того, что сигнал X-диапазона оказался меньшей мощности, поскольку аварийная система защиты от сбоев снизила её у основного передатчика. Команде миссии всё же удалось позже получить сигнал от зонда, однако 19 октября связь с «Вояджером-1» оборвалась полностью, поскольку зонд полностью отключил передатчик сигналов X-диапазона.
Инженеры миссии считают, что после сбоя этого аварийная система защиты аппарата активировалась ещё несколько раз, что в конечном счёте привело к тому, что зонд переключился на вспомогательный передатчик сигналов, работающий в S-диапазоне частот. Последний не использовался зондом с 1981 года. Учитывая тот факт, что сейчас «Вояджер-1» находится гораздо дальше от Земли, чем он был 43 года назад, команда миссии опасалась, что сигнал с Земли на S-передатчик аппарата просто не дойдёт, поскольку сам передатчик и его антенна используют гораздо меньше мощности, чем X-передатчик. Однако специалисты миссии также не хотели рисковать и отправлять сигнал на передатчик X-диапазона, что потенциально могло бы привести к очередной активации аварийной системы защиты от сбоев «Вояджера-1». В итоге сигнал с Земли 22 октября был послан именно на S-передатчик. Спустя два дня, 24 октября команда миссии наконец смогла восстановить канал коммуникации с зондом.
«Отключение [основного] передатчика, похоже, было вызвано аварийной системой защиты от сбоев, которая автономно решает проблемы, которые могут возникнуть у аппарата. Команда сейчас собирает всю доступную информацию, которая может помочь в определении источника проблемы и вернуть “Вояджер-1” в нормальное состояние работы», — говорится в заявлении NASA.
Активация аварийной системы защиты от сбоев «Вояджера-1» может быть вызвана разными причинами. Одной из них, например, является возможный перерасход энергии аппарата. Если это случается, зонд автоматически отключает не ключевые системы для экономии энергии.
Сейчас инженеры миссии пытаются определить, что явилось причиной активации системы защиты аппарата, учитывая, что у «Вояджера-1» должно было быть достаточно энергии для работы обогревателя. Однако в сообщении NASA отмечается, что поиск источника проблемы может занять несколько недель.
Несостоявшиеся звёзды могут иметь собственные планеты, подсказывает «Джеймс Уэбб» читать дальше
Коричневые карлики или несостоявшиеся звёзды, как их прозвали за неспособность запустить термоядерное горение, во многом остаются малоизученными объектами. Появление в космосе инфракрасного телескопа «Джеймс Уэбб» стало введением в строй наиболее подходящего инструмента для изучения этих относительно холодных и поэтому невидимых в оптическом диапазоне недозвёзд. «Уэбб» готов раскрывать их секреты, включая возможность появления у них планет и жизни.
Ещё в первые годы наблюдений телескопом «Хаббл» в одной из близких к Земле зон звездообразования в туманности Ориона были обнаружены объекты, напоминающие протопланетные диски (проплиды). Однако только с появлением «Уэбба» в центре проплидов были выявлены объекты, которые могут считаться коричневыми карликами. Инфракрасная спектроскопия, проведённая с помощью приборов «Уэбба», позволила измерить их температуру и оценить массу, что стало подсказкой к вопросу, могут ли коричневые карлики иметь собственные планетные системы. Скорее всего, могут.
В наблюдаемой области туманности Ориона, удалённой от Земли на 1500 световых лет, «Уэбб» обнаружил более двух десятков кандидатов в коричневые карлики. Набор статистики по этим объектам многое откроет для науки. Пока считается, что масса коричневых (иначе — бурых) карликов лежит в диапазоне 0,015–0,075 солнечных масс. «Уэбб» способен засекать такие объекты и, что немаловажно, позволяет оценить их температуру, по которой можно отличить коричневого карлика от звезды.
Например, один из обнаруженных «Уэббом» кандидатов имеет массу 0,05 солнечных масс — это примерно как пять Юпитеров. И таких примеров достаточно, чтобы учёные смогли лучше понять природу коричневых карликов и, в частности, их способность к формированию собственных планетных систем.
«Новые наблюдения JWST лишь коснулись вопроса коричневых карликов в Орионе, — говорят учёные. — Туманность содержит несколько сотен слабых объектов, которые могут быть коричневыми карликами, готовыми для спектроскопии с помощью JWST. Будущие наблюдения Ориона с помощью JWST потенциально могут обнаружить гораздо больше примеров проплидов вокруг коричневых карликов и определить наименьшую массу, при которой существуют коричневые карлики. Эта информация поможет нам заполнить пробелы в наших знаниях о том, как формируются коричневые карлики и их связь со звёздами и планетами».
–>
Ваша реклама может быть здесь... пишите на телегу @VOPROS24
Часовой пояс GMT +3, время: 06:35.
Весь материал, представленный на сайте взят из доступных источников или прислан посетителями сайта. Любая информация представленная здесь, может использоваться только в ознакомительных целях. Входя на сайт вы автоматически соглашаетесь с данными условиями. Ни администрация сайта, ни хостинг-провайдер, ни любые другие лица не могут нести отвественности за использование материалов. Сайт не предоставляет электронные версии произведений и ПО. Все права на публикуемые аудио, видео, графические и текстовые материалы принадлежат их владельцам. Если Вы являетесь автором материала или обладателем авторских прав на него и против его использования на сайте, пожалуйста свяжитесь с нами.