С 2018 года появился новый подкласс сверхновых — «коровы» (cow). Объект был открыт орбитальным рентгеновским телескопом NuSTAR и получил порядковый номер AT2018cow. Так случайно совпало, что на момент его открытия пришлась очередь вполне человеческой аббревиатуры cow, а сам объект оказался настолько уникальным, что все последующие открытия таких же сверхновых стали назвать «коровами». И первая «корова» смогла удивить ещё раз!
читать дальше
Группа астрофизиков из Университета Шеффилда в Великобритании изучила данные по сверхновой AT2018cow, полученные в разных диапазонах длин волн с упором на оценку их поляризации. Работа опубликована в журнале Monthly Notices of the Royal Astronomical Society. Оказалось, что взрыв и разброс вещества звезды в процессе рождения сверхновой AT2018cow был не сферическим, как утверждает общепринятая теория эволюции звёзд, а плоским.
Это оказалось настолько невероятным явлением, что его невозможно толком объяснить, особенно в сочетании с тем, что вспышка AT2018cow и сопровождающие её процессы (яркость, температура и длительное послесвечение) были на порядок мощнее всех ранее увиденных взрывов сверхновых.
На первый взгляд существует два объяснения «плоского» взрыва сверхновой AT2018cow: либо звезда сформировала колоссальный диск вещества ещё до взрыва, либо родившаяся после взрыва нейтронная звезда или чёрная дыра оказались настолько массивными, что не отпустили от себя сброшенную оболочку и сформировали диск аккреции — падающего на ядро или в дыру вещества. Удивительно, но такого не наблюдалось в случае последующего обнаружения четырёх новых «коров». Все новые «коровы» взрывались «шариками».
«О взрывах FBOT [«коров»] известно очень мало — они просто не ведут себя так, как должны вести себя взрывающиеся звезды, они слишком яркие и слишком быстро эволюционируют. Проще говоря, они странные, а новое наблюдение делает их ещё более странными», — сказал ведущий автор работы астрофизик Джастин Маунд (Justyn Maund).
Открытие подобной аномалии — это вызов земной науке и возможность сделать шаг в новом направлении. В следующем году, как ожидается, начнёт работать Обсерватория им. Веры Рубин с огромнейшей матрицей. Этот обзорный телескоп среди прочих наблюдений будет способен фиксировать множество переходных событий, включая поиск сверхновых и «коров» в частности. Поток новых данных поможет разобраться с явлениями, которые сегодня ставят учёных в тупик, и это время не за горами.
В четверг 30 марта марсоход NASA Perseverance («Настойчивость») начал сбор образцов пород в рамках старта новой научной программы — Delta Top Campaign. Предыдущая программа Delta Front Campaign привела к подготовке в общей сложности 22 контейнеров с образцами. Десять из них сброшены на открытую площадку-хранилище, а остальные будут храниться на борту марсохода. Новая программа предусматривает сбор образцов в верховьях дельты древней реки.
читать дальше
Каждая новая научная программа ориентирована на сбор образцов в одной конкретной зоне. Всего на борту марсохода 43 титановых пробирки-контейнера. Каждый раз производится два забора породы или керна. Один образец будет помещён в хранилище на поверхности Марса, а другой останется на борту марсохода. Если ровер не сможет вернуть образцы к месту отправки на Землю (а с ним может многое что произойти за следующие 7 с лишним лет ожидания), то роверы или вертолёты миссии по возвращению образцов сами подберут пробы с поверхности планеты.
Первый керн по новой программе взят 30 марта. Это была 16-я проба в виде керна. Марсоход в рамках первой программы взял для образцов пыль с поверхности и сделал забор атмосферы Марса. Последующие керны ровер будет брать по мере продвижения к верхней точке дельты древней реки. Эта область перспективна по двум причинам. Наносы породы могли быть принесены издалека, что расширяет зону исследований, а вторая причина — это изобилие карбонитов в образцах. На Земле карбониты содержат признаки биологической жизни, которую также мечтают обнаружить в пробах с Марса.
Также карбониты примечательны тем, что минералы образуются в присутствии жидкой воды. Изучение их образцов позволит восстановить историю воды на Марсе. Это важно не только для понимания климатической истории Красной планеты. Нам крайне необходимо построить надёжную климатическую модель Земли, а для этого требуются данные по планетам и климатам в широчайшем диапазоне. Изучение атмосфер экзопланет, кстати, из той же серии — это даёт нам богатые данные для прогнозирования климата нашей планеты. Впрочем, это уже другая история.